必赢亚洲手机app下载


异度空间的蝴蝶蚱蜢

自家来自何处

SSE图像算法优化系列六

  近日直接沉迷于SSE方面的优化,实在找不到想学学的参考资料了,就拿个台式机放在腿上翻翻OpenCv的源代码,无意中看出了OpenCv中有关积分图的代码,仔细研习了一番,觉得OpenCv对SSE的灵活运用真的做的很好,那里记录下我对该段代码的品尝并将其思路扩张到其他通道数的图像。

     该大旨代码位于:Opencv
3.0\opencv\sources\modules\imgproc\src\sumpixels.cpp文件中。

   
 我们贴出最感兴趣的一有些代码以便分析:

    bool operator()(const uchar * src, size_t _srcstep,int * sum, size_t _sumstep,double * sqsum, size_t, int * tilted, size_t,Size size, int cn) const
    {
        if (sqsum || tilted || cn != 1 || !haveSSE2) return false;
        // the first iteration
        memset(sum, 0, (size.width + 1) * sizeof(int));
        __m128i v_zero = _mm_setzero_si128(), prev = v_zero;
        int j = 0;
        // the others
        for (int i = 0; i < size.height; ++i)
        {
            const uchar * src_row = src + _srcstep * i;
            int * prev_sum_row = (int *)((uchar *)sum + _sumstep * i) + 1;
            int * sum_row = (int *)((uchar *)sum + _sumstep * (i + 1)) + 1;
            sum_row[-1] = 0;
            prev = v_zero;
            j = 0;
            for ( ; j + 7 < size.width; j += 8)
            {
                __m128i vsuml = _mm_loadu_si128((const __m128i *)(prev_sum_row + j));
                __m128i vsumh = _mm_loadu_si128((const __m128i *)(prev_sum_row + j + 4));
                __m128i el8shr0 = _mm_loadl_epi64((const __m128i *)(src_row + j));
                __m128i el8shr1 = _mm_slli_si128(el8shr0, 1);
                __m128i el8shr2 = _mm_slli_si128(el8shr0, 2);
                __m128i el8shr3 = _mm_slli_si128(el8shr0, 3);
                vsuml = _mm_add_epi32(vsuml, prev);
                vsumh = _mm_add_epi32(vsumh, prev);
                __m128i el8shr12 = _mm_add_epi16(_mm_unpacklo_epi8(el8shr1, v_zero),
                                                 _mm_unpacklo_epi8(el8shr2, v_zero));
                __m128i el8shr03 = _mm_add_epi16(_mm_unpacklo_epi8(el8shr0, v_zero),
                                                 _mm_unpacklo_epi8(el8shr3, v_zero));
                __m128i el8 = _mm_add_epi16(el8shr12, el8shr03);
                __m128i el4h = _mm_add_epi16(_mm_unpackhi_epi16(el8, v_zero),
                                             _mm_unpacklo_epi16(el8, v_zero));
                vsuml = _mm_add_epi32(vsuml, _mm_unpacklo_epi16(el8, v_zero));
                vsumh = _mm_add_epi32(vsumh, el4h);
                _mm_storeu_si128((__m128i *)(sum_row + j), vsuml);
                _mm_storeu_si128((__m128i *)(sum_row + j + 4), vsumh);
                prev = _mm_add_epi32(prev, _mm_shuffle_epi32(el4h, _MM_SHUFFLE(3, 3, 3, 3)));
            }
            for (int v = sum_row[j - 1] - prev_sum_row[j - 1]; j < size.width; ++j)
                sum_row[j] = (v += src_row[j]) + prev_sum_row[j];
        }

   
 为了验证更有利于,这里贴出我做的一般性C语言的代码和重复优化后的SSE代码。

     普通C语言:

 void GetGrayIntegralImage(unsigned char *Src, int *Integral, int Width, int Height, int Stride)
 {
      memset(Integral, 0, (Width + 1) * sizeof(int));                    //    第一行都为0
      for (int Y = 0; Y < Height; Y++)
      {
          unsigned char *LinePS = Src + Y * Stride;
          int *LinePL = Integral + Y * (Width + 1) + 1;                 //    上一行位置            
          int *LinePD = Integral + (Y + 1) * (Width + 1) + 1;           //    当前位置,注意每行的第一列的值都为0
          LinePD[-1] = 0;                                               //    第一列的值为0
          for (int X = 0, Sum = 0; X < Width; X++)
          {
             Sum += LinePS[X];                                          //    行方向累加
             LinePD[X] = LinePL[X] + Sum;                               //    更新积分图
          }
     }
}

       优化后的SSE算法:

void GetGrayIntegralImage(unsigned char *Src, int *Integral, int Width, int Height, int Stride)
{
    memset(Integral, 0, (Width + 1) * sizeof(int));            //    第一行都为0
    int BlockSize = 8, Block = Width / BlockSize;
    for (int Y = 0; Y < Height; Y++)
    {
        unsigned char *LinePS = Src + Y * Stride;
        int *LinePL = Integral + Y * (Width + 1) + 1;                //    上一行位置            
        int *LinePD = Integral + (Y + 1) * (Width + 1) + 1;          //    当前位置,注意每行的第一列的值都为0
        LinePD[-1] = 0;
        __m128i PreV = _mm_setzero_si128();
        __m128i Zero = _mm_setzero_si128();
        for (int X = 0; X < Block * BlockSize; X += BlockSize)
        {
            __m128i Src_Shift0 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i *)(LinePS + X)), Zero);        //    A7 A6 A5 A4 A3 A2 A1 A0
            __m128i Src_Shift1 = _mm_slli_si128(Src_Shift0, 2);                                            //    A6 A5 A4 A3 A2 A1 A0 0     
            __m128i Src_Shift2 = _mm_slli_si128(Src_Shift1, 2);    //    移位改成基于Shift0,速度慢,Why?    //    A5 A4 A3 A2 A1 A0 0  0
            __m128i Src_Shift3 = _mm_slli_si128(Src_Shift2, 2);                                            //    A4 A3 A2 A1 A0 0  0  0
            __m128i Shift_Add12 = _mm_add_epi16(Src_Shift1, Src_Shift2);                                   //    A6+A5 A5+A4 A4+A3 A3+A2 A2+A1 A1+A0 A0+0  0+0
            __m128i Shift_Add03 = _mm_add_epi16(Src_Shift0, Src_Shift3);                                   //    A7+A4 A6+A3 A5+A2 A4+A1 A3+A0 A2+0  A1+0  A0+0    
            __m128i Low = _mm_add_epi16(Shift_Add12, Shift_Add03);                                         //    A7+A6+A5+A4 A6+A5+A4+A3 A5+A4+A3+A2 A4+A3+A2+A1 A3+A2+A1+A0 A2+A1+A0+0 A1+A0+0+0 A0+0+0+0
            __m128i High = _mm_add_epi32(_mm_unpackhi_epi16(Low, Zero), _mm_unpacklo_epi16(Low, Zero));    //    A7+A6+A5+A4+A3+A2+A1+A0  A6+A5+A4+A3+A2+A1+A0  A5+A4+A3+A2+A1+A0  A4+A3+A2+A1+A0
            __m128i SumL = _mm_loadu_si128((__m128i *)(LinePL + X + 0));
            __m128i SumH = _mm_loadu_si128((__m128i *)(LinePL + X + 4));
            SumL = _mm_add_epi32(SumL, PreV);
            SumL = _mm_add_epi32(SumL, _mm_unpacklo_epi16(Low, Zero));
            SumH = _mm_add_epi32(SumH, PreV);
            SumH = _mm_add_epi32(SumH, High);
            PreV = _mm_add_epi32(PreV, _mm_shuffle_epi32(High, _MM_SHUFFLE(3, 3, 3, 3)));
            _mm_storeu_si128((__m128i *)(LinePD + X + 0), SumL);
            _mm_storeu_si128((__m128i *)(LinePD + X + 4), SumH);
        }
        for (int X = Block * BlockSize, V = LinePD[X - 1] - LinePL[X - 1]; X < Width; X++)
        {
            V += LinePS[X];
            LinePD[X] = V + LinePL[X];
        }
   }

  大家先来分解下这段代码的SSE优化过程吧。

   
 首先,用_mm_loadl_epi64两次性加载8个字节数据到XMM寄存器中,其中寄存器的高8位位0,此时寄存器的数码为:

      高位            0  0  0  0  0  0  0
 0 A7 A6 A5 A4 A3 A2 A1 A0        低位   (8位)

   
 因为涉嫌到加法,并且最大为8个字节数据的加法,由此转换来16位数据类型,使用_mm_unpacklo_epi8结合zero即可实现。

     此时XMM寄存器内容变为:

           Src_Shift0    A7 A6 A5 A4 A3 A2 A1 A0    (16位)

     此后有3次活动分别得到:

            Src_Shift1    A6 A5 A4 A3 A2 A1 A0 0       (16位)
            Src_Shift2    A5 A4 A3 A2 A1 A0 0  0     (16位)
            Src_Shift3    A4 A3 A2 A1 A0 0  0  0         (16位)

  通过_mm_add_epi16分别对4组16位数据进行8次相加:

            Shift_Add12   A6+A5 A5+A4 A4+A3 A3+A2 A2+A1 A1+A0 A0+0  0+0   (16位)
            Shift_Add03   A7+A4 A6+A3 A5+A2 A4+A1 A3+A0 A2+0  A1+0  A0+0   (16位)  

  再对他们进行相加:

        Low            A7+A6+A5+A4 A6+A5+A4+A3 A5+A4+A3+A2 A4+A3+A2+A1 A3+A2+A1+A0 A2+A1+A0+0 A1+A0+0+0 A0+0+0+0

   
 注意到低4位的16位数已经是接连相加的数目了,只要将她们转移为32位就可以直接拔取。

     而通过 __m128i High =
_mm_add_epi32(_mm_unpackhi_epi16(Low, Zero),
_mm_unpacklo_epi16(Low, Zero)); 这一句则足以把前边的高4位连续相加的值拼接起来得到:

       High                
 A7+A6+A5+A4+A3+A2+A1+A0  A6+A5+A4+A3+A2+A1+A0  A5+A4+A3+A2+A1+A0
 A4+A3+A2+A1+A0

  后面的操作则顺理成章了。

     
 注意到自我中心的更改在于原始代码中的el8shr12和el8shr03的计量中的_mm_unpacklo_epi8被扫除了,而在el8shr0一句中扩大了一个_mm_unpacklo_epi8,因而少了3次这个函数,很扎眼这样做是不会变动统计结果的。

     
 此外源代码中的部分_mm_add_epi16被我用_mm_add_epi32代表了,那至关首假如因为用_mm_add_epi32意思更明确,而且由于高位数据为0,他们的执行结果不会有其余区别。

   还有某些在测试时意识,就算Src_Shift2,Src_Shift3的位移是遵照Src_Shift0,即利用如下代码:

__m128i Src_Shift2 = _mm_slli_si128(Src_Shift0, 4);    
__m128i Src_Shift3 = _mm_slli_si128(Src_Shift0, 6);

  
速度会有相比强烈的低落,难道说移动的位数多少和CPU的耗时有关?

     
以上是灰度格局的算法,在自我的台式机电脑上,SSE优化后的语句虽然扩充了成千上万,不过实施功效约能升官30%,可是在部分PC上,普通的C和SSE优化后却不曾啥速度分别了,这也不亮堂是怎么了。

     
虽然是本着24位依然32位图像,基本的优化思想是同等的,可是有更多的底细需要团结小心。

     
24位仍然32位图像在此外机器配置上,速度都能有30%的升迁的。

     
依然感觉这种算法用文字很难发挥清楚,用代码再增长自己的长空组成可能更能明白吧。

 

图片 1

 

         

 

相关文章

No Comments, Be The First!
近期评论
    功能
    网站地图xml地图